Session- 2018-19

Transistors

- Bipolar Junction Transistors
- Field Effect Transistors

03-10-201

Bipolar Junction Transistor Construction There are two types of transistors: • pnp • npn The terminals are labeled: • E - Emitter • B - Base • C - Collector npn 03-10-2018

Transistor Operation

With the external sources, \boldsymbol{V}_{EE} and \boldsymbol{V}_{CC} , connected as shown:

- The emitter-base junction is forward biased
- The base-collector junction is reverse biased

Currents in a Transistor

Emitter current is the sum of the collector and base currents:

$$I_{\mathbf{E}} = I_{\mathbf{C}} + I_{\mathbf{B}}$$

The collector current is comprised of two currents:

$$I_C = I_{C_{majority}} + I_{CO_{minority}}$$

Operating Regions

- Active Operating range of the amplifier.
- Cutoff The amplifier is basically off. There is voltage, but little current.
- Saturation The amplifier is full on.
 There is current, but little voltage.

Approximations

Emitter and collector currents:

$$I_C \cong I_E$$

Base-emitter voltage:

$$V_{BE} = 0.7 \text{ V (for Silicon)}$$

03-10-2018

Alpha (α)

Alpha (α) is the ratio of I_C to I_E :

$$a_{dc} = \frac{I_C}{I_E}$$

Ideally: $\alpha = 1$

In reality: α is between 0.9 and 0.998

Alpha (a) in the AC mode:

$$\alpha_{ac} = \frac{\Delta I_C}{\Delta I_E}$$

Transistor Amplification

Currents and Voltages:

$$I_E = I_i = \frac{V_i}{R_i} = \frac{200 \text{mV}}{20\Omega} = 10 \text{mA}$$
 $A_V = \frac{V_L}{V_i} = \frac{50 \text{V}}{200 \text{mV}} = 250$

$$I_C \cong I_F$$

$$I_L \cong I_i = 10 \,\mathrm{mA}$$

$$V_L = I_L R = (10 \text{ ma})(5 \text{ k}\Omega) = 50 \text{ V}$$

Voltage Gain:

$$A_{V} = \frac{V_{L}}{V_{i}} = \frac{50 \text{V}}{200 \text{mV}} = 250$$

03-10-2018

Common-Emitter Configuration

- The emitter is common to both input (base-emitter) and output (collector-emitter).
- The input is on the base and the output is on the collector.

Common-Emitter Amplifier Currents

Ideal Currents

$$I_E = I_C + I_B$$
 $I_C = \alpha I_E$

Actual Currents

 $I_C = \alpha I_E + I_{CBO}$ where $I_{CBO} =$ minority collector current

 ${\bf I}_{\rm CBO}$ is usually so small that it can be ignored, except in high power transistors and in high temperature environments.

When $I_B = 0$ μ A the transistor is in cutoff, but there is some minority current flowing called I_{CEO} .

$$I_{CEO} = \frac{I_{CBO}}{1-\alpha}\Big|_{I_B=0\,\mu\text{A}}$$

$$T_{C} = \alpha T_{E} + T_{CBO}$$

$$I_{E} = T_{C} + I_{B}$$

$$I_{E} = \alpha (I_{C} + I_{B}) + I_{CBO}$$

$$(I - \alpha)^{T_{C}} = \alpha T_{B} + T_{CBO}$$

$$I_{C} = \alpha T_{B} + T_{CBO}$$

$$I_{C} = \alpha T_{B} + T_{CBO}$$

$$I_{C} = \beta T_{B} + T_{CEO}$$

$$When T_{B} = 0$$

$$I_{C} = T_{CEO} = T_{CBO}$$

$$03-10-2018$$

Beta (β)

 β represents the amplification factor of a transistor. (β is sometimes referred to as h_{fe} , a term used in transistor modeling calculations)

In DC mode:

$$\beta_{\rm dc} = \frac{I_C}{I_B}$$

In AC mode:

$$\beta_{\rm ac} = \frac{\Delta I_C}{\Delta I_B} \Big|_{V_{CE} = {\rm constant}}$$

03-10-2018

Beta (β)

Determining $\boldsymbol{\beta}$ from a Graph

$$\begin{split} \beta_{\rm AC} = & \frac{(3.2\,\text{mA} - 2.2\,\text{mA})}{(30\,\mu\text{A} - 20\,\mu\text{A})} \\ = & \frac{1\,\text{mA}}{10\,\mu\text{A}} \Big|_{V_{\rm CE} = 7.5} \\ = & 100 \end{split}$$

$$\beta_{DC} = \frac{2.7 \text{ mA}}{25 \mu \text{A}} |_{V_{CE}} = 7.5$$
= 108

Beta (β)

Relationship between amplification factors β and α

$$\alpha = \frac{\beta}{\beta + 1}$$

$$\beta = \frac{\alpha}{\alpha - 1}$$

Relationship Between Currents

$$I_C = \beta I_B$$

$$I_{C} = \beta I_{B} \qquad \qquad I_{E} = (\beta + 1)I_{B}$$

03-10-2018

Common-Collector Configuration

The input is on the base and the output is on the emitter.

Common-Collector Configuration

The characteristics are similar to those of the common-emitter configuration, except the vertical axis is $I_{\rm E}$.

03-10-2018

Relations

 $I_E = I_C + I_B$

we have

$$\frac{I_C}{\alpha} = I_C + \frac{I_C}{\beta}$$

and dividing both sides of the equation by I_C will result in

$$\frac{1}{\alpha} = 1 + \frac{1}{\beta}$$

or

$$\beta = \alpha \beta + \alpha = (\beta + 1)\alpha$$

so that

$$\alpha = \frac{\beta}{\beta + 1}$$

or

$$\beta = \frac{\alpha}{1 - \alpha}$$

Power Dissipation

Common-base:

$$P_{\text{Cmax}} = V_{\text{CB}}I_{\text{C}}$$

Common-emitter:

$$P_{\text{Cmax}} = V_{\text{CE}}I_{\text{C}}$$

Common-collector:

$$P_{\text{Cmax}} = V_{\text{CE}}I_{\text{E}}$$

03-10-2018

Transistor Specification Sheet

MAXIMUM RATINGS

Rating	Symbol	2N4123	Unit
Collector-Emitter Voltage	VCSIO	30	Vdc
Collector-Base Voltage	Vcao	40	Vdc
Emitter-Base Voltage	Veno	5.0	Vdc
Collector Current - Continuous	Le	200	mAde
Total Device Dissipation @ T _A = 25°C Derate above 25°C	Po	625 5.0	mW mW'C
Operating and Storage Junction Temperature Range	T _j ,T _{eq}	-55 to +150	c

THERMAI	CHARAC	TEDISTICS	

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	Rioc	83.3	'C W
Thermal Resistance, Junction to Ambient	Reita	200	'CW

ELECTRICAL CHARACTERISTICS (T _A = 25°C unless otherwise noted)			_	
Characteristic	Symbol	Min	Max	Uni
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (1) (I _C = 1.0 mAdc, I _E = 0)	Vouescho	30		Vdc
Collector-Base Breakdown Voltage (I _C = 10 µAdc, I _E = 0)	Voirceo	40		Vde
Emitter-Base Breakdown Voltage (Ig = $10 \mu Adc$, I _C = 0)	V _{(BR)EBO}	5.0	2.	Vdc
Collector Cutoff Current $(V_{CS} = 20 \text{ Vdc}, I_E = 0)$	1 _{cm}		50	nAde
Emitter Cutoff Current $(V_{BE} = 3.0 \text{ Vdc}, I_C = 0)$	I _{EBO}	-	50	nAdo
ON CHARACTERISTICS				
DC Current Gain(1) (I _C = 2.0 mAdc, V _{CE} = 1.0 Vdc) (I _C = 50 mAdc, V _{CE} = 1.0 Vdc)	hen	50 25	150	- 1
Collector-Emitter Saturation Voltage(1) ($I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc}$)	Velous	1 =	0.3	Vdc
Base-Emitter Saturation Voltage(1) ($I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc}$)	V _{BF(ssc)}	-	0.95	Vde
SMALL-SIGNAL CHARACTERISTICS	(A			400
Corrent-Gain – Bandwidth Product (f _C = 10 mAde, V _{Ch} = 20 Vdc, f = 100 MHz)	fr	250		MHz
Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_E = 0$, $r = 100 \text{ MHz}$)	Coho	*	4.0	pF
Input Capacitance $(V_{BE}=0.5\ Vdc,\ I_C=0,\ f=100\ kHz)$	Ceo	70	8.0	pF
Collector-Base Capacitance (I _E = 0, V _{CB} = 5.0 V, f = 100 kHz)	C _{ib}	==	4.0	pF
Small-Signal Current Gain (I _C = 2.0 mAdc, V _{CL} = 10 Vdc, f = 1.0 kHz)	hu	50	200	
Current Gain – High Frequency (I _C = 10 mAdc, V _{Cl} = 20 Vdc, f = 100 MHz) (I _C = 2.0 mAdc, V _{Cl} = 10 V, f = 1.0 kHz)	hte	2.5 50	200	-
Noise Figure ($I_C = 100 \text{ µAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $R_S = 1.0 \text{ k ohm}$, $f = 1.0 \text{ kHz}$)	NF	=	6.0	dB

	51	ummary	
Parameters	Common Emitter	Common Collector	Common Base
Voltage Gain	Medium(around 500)	Low(less than unity)	High
Current Gain	Medium(around 100)	High(More than CE)	Low(around 0.9 to.998)
Input Impedance	Medium(around 800ohm)	High(around 750kohm)	Low(around100ohm)
Output Impedance	Medium(around 50kohm)	Low(around 25ohm)	High(around 500kohm)
Phase	180 degree	0 degree	0 degree

2. Determine Q-point and find the maximum peak value of base current, for linear operation $\beta_{c} = 200$

03-10-2018

$$\begin{split} I_{B} &= \frac{V_{BB} - V_{BB}}{R_{B}} = \frac{10V - 0.7V}{47K\Omega} = 198\mu A = I_{BQ} \\ I_{C} &= \beta_{DC}I_{B} = (200)(198\mu A) = 39.6mA = I_{CQ} \\ V_{CB} &= V_{CC} - I_{C}R_{C} = 20V - 13.07 \\ &= 6.93V = V_{CBQ} \\ *I_{C(sat)} &= \frac{V_{CC} - V_{CE(sat)}}{R_{C}} = I_{C(sat)} = \frac{V_{CC}}{R_{C}} = \frac{20V}{330\Omega} \end{split}$$

$$*I_{C(\text{cut off})} = 0$$
 $*I_{C(\text{sat})} - I_{CQ} = 60.6 - 39.6 = 21mA$
 $I_{CQ} - I_{C(\text{cut off})} = 39.6 - 0 = 39.6mA$

