

I. Stroke 1. Isothermal Expansion.

$$q_2 = -w_1 = RT_2 \ln (V_2/V_1)$$
 ...(1)

II. Stroke 2. Adiabatic Expansion.

Now, by definition,
$$C_{\mathbf{v}} = (\partial U/\partial T)_{\mathbf{v}}$$
 ...(2)

$$\Delta U = C_{\mathbf{v}} \Delta T = C_{\mathbf{v}} (T_1 - T_2) = -w$$
 ...(3)
(change in temperature, ΔT = final temperature - initial temperature)
or $-w = C_{\mathbf{v}} (T_1 - T_2) = -C_{\mathbf{v}} (T_2 - T_1)$...(4)
If the work done in this stage is denoted by w_2 , then

$$w_2 = -C_{\mathbf{v}} (T_2 - T_1)$$
 ...(5)

III. Stroke 3. Isothermal Compression.

$$-q_1 = w_3 = RT_1 \ln (V_4/V_3)$$
 ...(6)

IV. Stroke 4. Adiabatic Compression.

$$\Delta U = w = C_{\nu} \Delta T = C_{\nu} (T_2 - T_1).$$

Let w₄ be the work done in this stage. Then,

$$w_4 = C_\nu (T_2 - T_1)$$

The net heat absorbed (q) by the ideal gas in the whole cycle is given by

$$q = q_2 + (-q_1) = RT_2 \ln (V_2/V_1) + RT_1 \ln (V_4/V_3)$$

= $RT_2 \ln (V_2/V_1) - RT_1 \ln (V_3/V_4)$

$$C_{\nu} \ln (T_2/T_1) = R \ln (V_3/V_2)$$
 (For stage II)
 $C_{\nu} \ln (T_2/T_1) = R \ln (V_4/V_1)$ (For stage IV)
 $V_3/V_2 = V_4/V_1$ or $V_2/V_1 = V_3/V_4$

$$q = q_2 - q_1 = R (T_2 - T_1) \ln (V_2/V_1)$$

Similarly, the net work done by the gas is given by

$$w = -w_1 + (-w_2) + w_3 + w_4$$

$$= RT_2 \ln V_2/V_1 - C_v(T_2 - T_1) + RT_1 \ln (V_4/V_3) + C_v(T_2 - T_1)$$

$$= RT_2 \ln (V_2/V_1) - RT_1 \ln (V_3/V_4)$$

Since

$$V_2/V_1 = V_3/V_4$$

Hence, •

300

$$w = R(T_2 - T_1) \ln (V_2/V_1)$$

$$q_2 = RT_2 \ln (V_2/V_1)$$

12 by Eq. 1,

$$w = q_2 (T_2 - T_1)/T_2$$

Efficiency of a Heat Engine. The fraction of the heat absorbed by an engine which it can convert into work gives the efficiency (η) of the engine.

From Eq. 13, it is seen that

Efficiency,
$$\eta = w/q_2 = (T_2 - T_1)/T_2$$
(14)